IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Wake-Up Harvester Design for Batteryless IoT System

(https://sdmay21-14.sd.ece.iastate.edu)

Team Leader Email: <u>esduan@iastate.edu</u>

Advisor & Client: Prof. Henry Duwe

Team sdmay21-14: Edmund Duan, Jacob Bernardi, Douglas Zuercher Kwanghum (Ted) Park, Bryce Staver, Zacharias (Zack) Komodromos

Project Need and Goal

Motivation for project:

- It is useful for IoT devices to synchronize between themselves for communication of data, distribution of sensed values, and low-cost decision making.
- Batteryless systems are intermittent (not always powered, dependant on harvestable energy)
- Makes it unlikely that two IoT devices are regularly on at the same time
- Conserve power to increase the likelihood two nodes can be active at the same time.

IOWA STATE UNIVERSITY

Requirements

Functional Design Requirements

- Wake up only on valid triggers
- Repeat trigger once received
- Enter normal operation once triggered
- Maximum off time no greater than 1 minute

Non-Functional Design Requirements

- Small package size for device (4" x 4")
- Batteryless device
- Triggerable within 1 meters

Resource Requirements:

- Limitations of the environment
 - Nodes may be in an environment with RF noise which can interfere with trigger signal
 - Availability of RF energy to harvest
- Limited efficiency of RF harvesting technology
 - Nodes are only able to harvest so much energy over a given period of time
 - MCU will consume a relatively large amount of power when in an on-state
 - Using lower voltage leads to less efficiency which causes wasted power

IOWA STATE UNIVERSITY

Risk Identification & Mitigation

- Not connected to the internet or any other sort of local network, cybersecurity concerns unlikely
- If the trigger preamble is correctly guessed, anyone can trigger the device
- To restrict access, a unique preamble could be created, only known to team

IOWA STATE UNIVERSITY

Design Thought Process

- Planned to use third-party harvester, use lower capacitor values
- Access to DC-DC converter to trigger harvester was not available
- Trigger won't change operation if MCU is active, switch doesn't work as intended
- No DC-DC regulator due to the silicon shortage

First Design

Second Design

IOWA STATE UNIVERSITY

System Analysis

Functions of system

- Supply system with power from RF harvester
- When wake up signal is received, send wake up signal to next node
- Meant to run MCU code between 1.02-1.25 V
- System should consume as little power as possible

IOWA STATE UNIVERSITY

Hardware Implementation (Main Components)

RF Harvester

- P2110
- Harvests power efficiently in 915 MHz ISM band
- Given by client

MCU

- TI CC1352
- Target of project, meant to turn on at specific parameters
- Recommended by client
- Primarily used in IoT applications

Wake Up Radio/Transceiver

- AX-5301 evaluation board
- Found by team
- Sub-GHz, very low power transceiver

DC-DC Regulator

- TPS61100
- Found by team
- High efficiency to supplement harvester converter at low power consumption

IOWA STATE UNIVERSITY

Hardware Implementation (Tools)

- Learned how to use Altium Designer for the schematic and PCB
 - Organizing schematics in a readable fashion
 - Component placement on layout
 - Routing of PCB
- CST Studio Suite
 - Used the macros in CST to construct grounded coplanar waveguide
- Microsoft Excel
 - Organized BOM (Bill of Materials) to order parts for PCB
 - Graphed and organized data from testing

IOWA STATE UNIVERSITY

Hardware Implementation (Design Process)

- Parts Selection
 - Searching Digi-Key for available parts
 - Finding parts with footprint already in Altium library
- Schematic Organization
 - Schematic pages for major components
- Footprint and symbol creation
 - Made custom footprints for components that were not already in library
 - Used datasheets to find physical dimensions

IOWA STATE UNIVERSITY

Hardware Implementation (Design Process)

- PCB Organization
 - Logical placement
 - Routing of signals
 - Priority of signals
- RF Routing
 - PCB materials and characteristics
 - Implementing waveguides

IOWA STATE UNIVERSITY

Hardware Implementation (Considerations)

Manufacturing and Assembly

- Rules set up with capabilities of board house
- Components sized to be hand soldered when possible RF Portions
 - Traces kept short and straight with linear tapers
 - Grounded coplanar waveguide
- Direct connections over of thermal reliefs for lower inductance connections Power
 - Wider traces and copper pours to lower resistance
 - Pour around MCU for power connection

Ease of Use

- Board flows from left to right, or input to output
- Banana connections for testing with power supply
- Oscilloscope probe hooks for testing
- Test points for voltage measurements
- Three debug LEDs for the MCU
- Slide switches for control of power and LEDs

IOWA STATE UNIVERSITY

Hardware Implementation (Component Testing)

- Done by measuring on and off times with oscilloscopes with varying loads and distances from transmitter
- Results were expected
- Learned how to use the harvester in a lab setting

IOWA STATE UNIVERSITY

Software Implementation (MCU)

The process of tackling software was based on our device's state diagram. The first step when powered on is configuring the AX5043. We opted to use TI-RTOS for built in functionalities like:

- SPI Handler
- Timer Handler
- Interrupt Handler/GPIO Functionality

We learned about:

- Using TI-RTOS functions by reading through its documentation
- Basics of SPI and different standards (polarity, phase etc)
- Integrating 2 different companies' devices to interface

IOWA STATE UNIVERSITY

With the MCU capable of programing the AX5043, we could now work on completing the first part of the device cycle. For testing, we wrote functions to confirm basic functionality:

- testing SPI: Write to SCRATCH register and read from it to see if the value changed
- testing Interrupt: Instruct AX5043 to throw an interrupt and wait on the MCU to see if it triggers

Next we needed to lay the groundwork for the functions by writing custom write and read functions, and use them for common operations:

- trns_write(address,value)
- trns_read(address,value)

IOWA STATE UNIVERSITY

Using those base functions, we could create a library to be used to configure the AX5043: tnrs_setPwrMode(uint8_t mode)

• Sets power mode using input (TX,RX,WuR,idle etc)

trns_setupTx()

- Writes to multiple registers configuring the AX5043's transmit details trns_setupRx()
 - Writes to multiple registers configuring the AX5043's transmit details
- trns_transmit(uint8_t *pkt, uint16_t pktlen)
- Writes packet with predefined preamble to FIFO register, commits and sends trns_receive_isr(..)
 - Used when AX5043 interrupts for receive
 - Reads FIFO register for received data

pll_ranging()

• Performs PLL ranging that should be run before every tx and rx as per programming manual

IOWA STATE UNIVERSITY

Each function contains multiple writes and reads to the AX5043 to set options including:

- Carrier Frequency (27MHz-1050MHz)
- Modulation type (FSK,AFSK,GMSK,PSK...)
- Framing options (preamble size, length byte position, CRC)
- Bitrate

And each of these decisions lead to more registers needing values like:

- Decimation
- Frequency Deviation
- Filter BW
- RX thresholds

The programming manual for the AX5043 documents all essential registers and provides information on how to populate depending on these decisions. A clear process on what all needs changing or in what order is not present in the manual though. Initial testing resulted in a failure to transmit or a failure to receive or both.

IOWA STATE UNIVERSITY

ON-Semi recommends AXRadioLab (source code generator for AX5043)

- Generates all necessary files for AX8052, ON-SEMI's MCU
- Provides Values for AX5043 registers based on user input configuration

Alternative is using the Programming manual provided calculations

- Not a clear list of registers to write to
- No way of knowing PERFTUNE registers since it says to only change a handful of values

After many trials and errors we managed to get a configuration to work. Small changes to the settings resulted in failure even with the values generated by AXRadioLab.

		- /	Radio							
			Carrier Frequency	[MHz]	433.000000	RFDIV	6	Fxtal [MHz]	48.000000	
			Symbol rate (air) [k	kS/s]	10.000000			XTALCAP	200	3.0pF
			Bitrate (wire) [kBit/s	[S]	10.000000			Max AFC range +/-	0.87	kHz
			Modulation		FSK	•		TCXO precision	1.00	ppm
			Channel Spacing [kHz] \$50.000000 re		recomm	nended	1 50.0kHz			
			Number of channel	ls 1	1					
n nandful			Freq topmost channel [MHz] 433.000000							
			Transmit Modulation Factor Deviation [Htz] (f_mark - f_space)/2 Transmit Power (dBm) Receive RX Bandwidth [Htz] RX bandwidth 3dB		0.666667		Liste	n before talk LBT Busy Breshold (dB Max number of retu Retry Interval (ms) Force TX	С hm] <u>4</u> 93 mins <u>4</u> 0 <u>4</u> 10 С	
	v							total packet	t length (ms) 1:	2
	SYNC WORD	LEN & MA			кс			DATA	CRC	;
AA	Syncword length (Bills) S3 S2 S1 S0 Syncword 33 55 S3 55 Postion		ength $\frac{4}{3} \times 3$ byte Position $\frac{4}{3} \times 0$	 enab address address 	able address matching ss position $\sqrt[4]{\times 1}$ ss length [bytes] $\sqrt[4]{d}$ 2		00 (88	00 55 66 77	Off CRC INIT	
d bits 0 00	C meaucoged Oneith. transitiona 53 DC 0 mex investigate 53 DC -5	Signific ler Max packet (RX drops k	ant bits 38 n offset 340 length 34200 onger packets)	master slave mask C TX s	32 : 34 : 00 33 : 34 : 00 FF : FF : 00 ender's address	: 00 : 00 : 00	For Pf in coun	R test: sert 16 bit counter ter position $\frac{4}{3}$ x 0		
		P	ostion	at positio	20	10				

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Framing Mode HDLC

PREAMBLE

Length [Bits]

Character unencoded WOR PA [ms]

Software Implementation (Testing)

Once configured, need to confirm configuration works:

- Setup one device as "agent"
 - Waits to receive signal
 - Once signal is received, resend it
- Setup second device as "controller"
 - Send a signal
 - Wait until timeout for signal to be received

But, debugging both the Tx and Rx at the same time is hard. Some strategies we used:

- Monitoring power consumption
- Checking register outputs
- Configuring other MCUs as Tx/Rx devices
- Spectrum analyzer!

IOWA STATE UNIVERSITY

Software Implementation (Takeaways)

Learned:

- Difficult to debug communication since both Tx and Rx need to be working to confirm the other, Debugging a Tx/Rx pair without having an operating Tx/Rx to work with
- How the AX5043 handles data IO
- Some of the parameters which must be set for wireless communication (carrier freq, framing, encoding, power coeff, modulation etc)
- Using recommended resources as best as possible

IOWA STATE UNIVERSITY

Demo

IOWA STATE UNIVERSITY

Future Work

- Find methods and equipment to reliably test transceiver?
- Make PCB 4 layer and add transceiver on board
- Add shielding vias around RF traces
- Find another high efficiency DC-DC converter that is available
- Explore plausibility of using MCU to send/receive wake up signal

IOWA STATE UNIVERSITY

Thank You

• Questions?

IOWA STATE UNIVERSITY